

SPECIAL REPORT

Interaction of biphenylimidazole and imidazoleacrylic acid nonpeptide antagonists with valine 108 in TM III of the AT₁ angiotensin receptor

Vaneet Nirula, Wei Zheng, Renuka Sothinathan & ¹Kathryn Sandberg

Division of Nephrology and Hypertension, Department of Medicine, Georgetown University Medical Center, 4000 Reservoir Road, NW, Washington, DC, 20007, U.S.A.

Interspecies amino acid exchange, based on pharmacological differences between mammalian AT₁ and amphibian xAT angiotensin II receptors, previously demonstrated that Val¹⁰⁸ in transmembrane III (ValIII:08) is a critical structural requirement for binding the biphenylimidazole, losartan. Here, we investigated a series of biphenylimidazole and imidazoleacrylic acid nonpeptides to determine the general role of Val¹⁰⁸ in nonpeptide recognition. Substitution of Val¹⁰⁸ in the rAT_{1b} receptor with Ile, the corresponding residue in xAT_a, significantly reduced ligand affinities from both nonpeptide classes (F_{mut} values (mutant $IC_{50}/rAT_{1b}IC_{50}$): losartan>L-162,389>L-162,313>L-162,017=L-163,491>SB-203,220>SK&F-108,566). While distinct molecular requirements exist for biphenylimidazole and imidazoleacrylic acid binding, these results suggest that Val^{108} is a common structural determinant of nonpeptide recognition on the AT₁ receptor.

Keywords: Angiotensin; angiotensin receptors; nonpeptide antagonists; biphenylimidazoles; imidazoleacrylic acids; site-directed mutagenesis; ligand binding

Introduction AT₁ receptor nonpeptide antagonists fall into two major categories, biphenylimidazole derivatives and imidazoleacrylic acids (Figure 1). Alignment of the imidazole from the lead compound, CV-2947, with the imidazole of His⁶ in angiotensin II (AII) led to the development of biphenylimidazoles, while alignment with the aromatic component of Pro⁷ led to imidazoleacrylic acids (Timmermans et al., 1993). Mammalian AT₁ receptors bind the biphenylimidazole, losartan, with >25,000 fold greater affinity than amphibian AT receptors. Substitution of Val¹⁰⁸ in the rAT_{1b} receptor with Ile which is the corresponding residue in the frog xAT_a receptor, markedly attenuated specific binding of losartan by 40 fold while AII peptide affinities remained identical to wild type receptors (Ji et al., 1994). To investigate the general role of Val¹⁰⁸ in nonpeptide recognition, various biphenylimidazole and imidazoleacrylic acid nonpeptides were studied.

Methods The rAT_{1b} mutants, Val¹⁰⁸→Ile (Ji et al., 1994) and Val¹⁰⁸→Ala (Ji et al., 1995) have been constructed previously. Radioligand binding assays were performed on membranes from COS-7 cells transfected by the calcium phosphate technique (Ji et al., 1995). The IC₅₀ and B_{max} values from the specific binding data were determined by computerized nonlinear regression analysis by use of the 'Kaleidagraph' programme. Monoiodinated [125I]-[Sar¹, Ile³] AII was obtained from Peptide Radioiodination Center. Angiotensin II peptides were purchased from Peninsula. Nonpeptides were provided as follows: SK&F 108,566 and SB 203,220 (SmithKline Beecham); L-163,017, L-162313, L-163491 and L-162,389 (Merck) and losartan (DuPont).

Results The rAT_{1b} mutant, Val¹⁰⁸→Ile, was evaluated for its affinity towards various biphenylimidazoles and imidazoleacrylic acids in transiently transfected COS-7 cell membranes. As previously described (Ji et al., 1994), Val¹⁰⁸ → Ile caused a 40 fold reduction in losartan affinity while peptide binding affinities and B_{max} values were indistinguishable from the wild type receptor (Table 1). Significant reductions in affinities for

the Val¹⁰⁸→Ile mutant were observed for all the biphenylimidazoles. Although not as large, the imidazoleacrylic acid derivatives also exhibited reductions in ligand affinities for the mutant as evidenced by smaller F_{mut} values (= IC_{50} mutant/ IC₅₀ rAT_{1b}) compared with the biphenylimidazoles. The rank order of F_{mut} values was the following: losartan > L-162,389 > L-162,313 > L-162,017 = L-163,491 > SB-203,220 > SK&F 108,566. Comparison of biphenylimidazole affinities for the two mutants revealed 3-13 fold lower F_{mut} values for Ala¹⁰⁸ compared to the Ile¹⁰⁸ mutant. That is, the Ala¹⁰⁸ variant had higher affinities for the biphenylimidazoles than the Ile¹⁰⁸ mutant. In contrast, the imidazoleacrylic acids exhibited 12–14 fold increases in F_{mut} values for the Ala¹⁰⁸ compared to the Ile¹⁰⁸ mutant indicating that this class of nonpeptides had lower affinities for Ala¹⁰⁸ compared to the Ile¹⁰⁸ variant.

Discussion These results suggest that Val¹⁰⁸ is a structural determinant of nonpeptide ligand recognition in the AT₁ receptor for both biphenylimidazoles and imidazoleacrylic acid nonpeptide classes. One interpretation is that Val¹⁰⁸ is in close proximity to a general nonpeptide binding site on the AT₁ receptor and provides a hydrophobic interaction that stabilizes the ligand. If the hydrophobic side chains of Val¹⁰⁸ are interacting more directly with imidazoleacrylic acid than biphenylimidazole ligands, then removal of the hydrophobic interaction by substitution of Val¹⁰⁸ with Ala would cause larger reductions in imidazoleacrylic acid binding affinities compared with biphenylimidazoles. Furthermore, the difference in affinities towards the Ile108 mutant between nonpeptide classes could be explained by the nature of the amino acid-side chain interactions. The imidazoleacrylic acids may bind within the pocket such that the hydrophobic interaction between Val¹⁰⁸ and nonpeptide could be mimicked by the similarly hydrophobic Ile¹⁰⁸. In comparison, the biphenylimidazoles may be unable to take full advantage of the hydrophobic interaction of Ile due to steric hindrance; there are 4 methyl groups in Ile compared with 3 in Val. This possibility could account for the larger F_{mut} values observed for biphenylimidazoles compared with imidazoleacrylic acid nonpeptides towards the Ile108

If Val¹⁰⁸ was influencing nonpeptide binding indirectly, substitution with Ala would be unlikely to reduce markedly F_{mut}

¹ Author for correspondence.

Table 1 Binding affinities for angiotensin ligands

		Wild type and mutant angiotensin II receptors				
	rAT_{1b}	Val ¹⁰⁸ →Ile			Val ¹⁰⁸ →Ala	
Angiotensin II ligands	IC_{50} (nm)	F_{mut}	IC_{50} (nm)	F_{mu}	IC_{50} (nm)	F_{mut}
Angiotensin II	1.1 ± 0.1	1.0	1.4 ± 0.1	1.3	1.4 ± 0.2	1.3
[Sar ¹ ,Ile ⁸]AII	2.1 ± 0.2	1.0	2.6 ± 0.3	1.2	2.5 ± 0.2	1.2
Biphenyllimidazoles						
Losartan	2.3 ± 0.2	1.0	80 ± 9	35	28 ± 4	12
L-162389	1.3 ± 0.2	1.0	24 ± 9	18	6.6 ± 6	5.1
L-162313	63 ± 7	1.0	590 ± 5	9.4	90 ± 7	1.4
L-163017	4.2 ± 0.9	1.0	32 ± 10	7.6	5.3 ± 3	1.3
L-163491	51 ± 2	1.0	400 ± 6	7.8	30 + 5	0.59
Imidazoleacrylic acids						
SB-203220	19 ± 8	1.0	71 ± 20	3.7	860 + 80	45
SK&F-108566	4.2 ± 2	1.0	7.1 ± 2	1.7	99±40	24

Data represent the mean of the IC₅₀ values \pm s.e. obtained from 3–6 independent experiments each performed in triplicate with [125 I]-Sar¹,Ile⁸]AII as the radioligand. F_{mut} =mutant IC₅₀/rAT_{1b} IC₅₀, B_{max} values (mean \pm s.e.mean n = 3–12) in fmol/10⁵ cells: rAT_{1b}, 9.3 \pm 2; Val¹⁰⁸ \rightarrow Ile (rAT_{1b}), 11 \pm 2; Val¹⁰⁸ \rightarrow Ala (rAT_{1b}), 12 \pm 2.

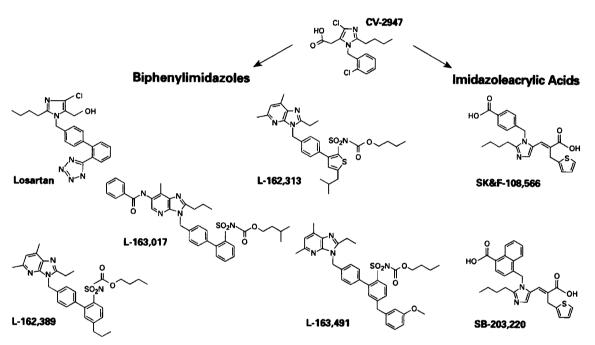


Figure 1 Biphenylimidazole derivatives and imidazoleacrylic acids used in this study.

values since disruption of local receptor conformation would be minimal due to the nature of the small uncharged Ala residue. However, these findings do not exclude the possibility that the Ala mutations do cause alterations in local conformation that indirectly influence nonpeptide binding. Future studies in which nonpeptide chemical moieties are systematically exchanged are likely to define specific ligand side chain-amino acid interaction points and thus a clearer picture of the exact nature of nonpeptide binding pockets on the AT₁ receptor.

These results suggest that significant overlap exists between the structural determinants of biphenylimidazole and imidazoleacrylic acid antagonist binding. Thus, these findings are consistent with previous mutagenesis study of the human AT₁ receptor suggesting that Asn²⁹⁵ in TMVII is a common point of interaction for biphenylimidazoles and imidazoleacrylic acids since both classes of nonpeptides were affected by site-directed mutagenesis of this residue (Schambye et al., 1995). These findings are also consistent with a recent study in which structurally dissimilar series of NK₁ antagonists were shown to interact within the same binding site on the neurokinin NK₁ receptor (Cascieri et al., 1995).

The observation that Val¹⁰⁸ may be of general importance in

The observation that Val¹⁰⁸ may be of general importance in nonpeptide binding in the AT_1 receptor supports the concept

that a general nonpeptide binding site exists within the TM domain of all G-protein coupled receptors regardless of the nature of the native ligand (Cascieri et al., 1995). When a common nomenclature (Schwartz, 1994) in which TM domains are numbered based on residues highly conserved across the whole superfamily is taken into account, Val¹⁰⁸ (ValIII:08) is found to lie in the same position as residues shown to play crucial roles in ligand interactions in other G-protein coupled receptors including Glu¹¹³ in rhodopsin, Asp¹¹³ in monoamine receptors, His¹⁰⁸ in the tachykinin NK₁ receptor and Lys¹⁸² in the endothelin ET_B receptor (Schwartz, 1994).

In conclusion, these findings indicate that biphenylimidazole and imidazoleacrylic acids share overlapping molecular determinants of ligand recognition on the AT₁ receptor. Additional investigations will be required to define fully the precise nature of the nonpeptide binding sites which will facilitate approaches to rational ligand design and thus potentially lead to improved therapeutics.

This study was supported by grants from the American Heart Association, Nation's Capitol Affiliate and the National Kidney Foundation of the National Capital Area.

References

- CASCIERI, M.A., SHIAO, L.-L., MILLS, S.G., MACCOSS, M., SWAIN, C.J., YU, H., BER, E., SADOWSKI, S., WU, M. T., STRADER, C.D. & FONG, T.M. (1995). Characterization of the interaction of diacylpiperazine antagonists with the human neurokinin-1 receptor: identification of a common binding site for structurally dissimilar antagonists. *Mol. Pharmacol.*, 47, 660-665.

 JI, H., LEUNG, M., ZHANG, Y., CATT, K.J. & SANDBERG, K. (1994).
- JI, H., LEUNG, M., ZHANG, Y., CATT, K.J. & SANDBERG, K. (1994). Differential structural requirements for specific binding of nonpeptide and peptide antagonists to the AT₁ angiotensin receptor: amino acid residues that influence binding of the antihypertensive drug, Losartan. J. Biol. Chem., 269, 16533-16536.
- JI, H., ZHENG, W., ZHANG, Y., CATT, K.J. & SANDBERG, K. (1995). Genetic transfer of a nonpeptide binding site to a previously unresponsive receptor. *Proc. Natl. Acad. Sci. U.S.A.*, 92, 9240 – 9244.
- SCHAMBYE, H., HJORTH, S.A., WEINSTOCK, J. & SCHWARTZ, T.W. (1995). Interaction between the nonpeptide angiotensin antagonist SKF-108,566 and histidine 256 (HisVI:16) of the angiotensin type 1 receptor. *Mol. Pharmacol.*, 47, 425-431.
- SCHWARTZ, T.W. (1994). Locating ligand binding sites in 7TM receptors by protein engineering. Curr. Opin. Biotech., 5, 434-444.
- TIMMERMANS, P.B.M.W.M., WONG, P.C., CHIU, A.T., HERBLIN, W.F., BENFIELD, CARINI, D.J., LEE, R.J., WEXLER, RR., SAYE, J.A.M. & SMITH, R.D. (1993). Angiotensin II receptors and angiotensin II receptor antagonists. *Pharmacol. Rev.*, 45, 205-251

(Received August 13, 1996) Accepted October 3, 1996)